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In this article, we introduce an image/video restoration approach by utilizing the high-dimensional similarity

in images/videos. After grouping similar patches from neighboring frames, we propose to build a multiplanar

autoregressive (AR) model to exploit the correlation in cross-dimensional planes of the patch group, which has

long been neglected by previous AR models. To further utilize the nonlocal self-similarity in images/videos, a

joint multiplanar AR and low-rank based approach is proposed (MARLow) to reconstruct patch groups more

effectively. Moreover, for video restoration, the temporal smoothness of the restored video is constrained

by the Markov random field (MRF), where MRF encodes a priori knowledge about consistency of patches

from neighboring frames. Specifically, we treat different restoration results (from different patch groups) of

a certain patch as labels of an MRF, and temporal consistency among these restored patches is imposed. The

proposed method is also suitable for other restoration applications such as interpolation and text removal.

Extensive experimental results demonstrate that the proposed approach obtains encouraging performance

comparing with state-of-the-art methods.
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1 INTRODUCTION

Image/video restoration aims to recover original images/videos from their low-quality observa-

tions, whose degradations are mostly generated by defects of capturing devices or error-prone

channels. It is one of the most important techniques in image/video processing and low-level
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computer vision. Researchers have been dedicated to such topics in the past few decades. Among

different image restoration problems, image restoration from limited samples has attracted many

researchers’ attention. In particular, we focus on the restoration of images with random-missing

pixels, as the problem addressed in several works [7, 15, 16, 19, 21, 27, 30, 31, 36, 47, 49, 51, 54].

Recovery of the random-missing pixels modeled by a random matrix is often required in real appli-

cations like compressive sensing [39, 40], inpainting [12, 43], and reconstruction of multispectral

images [14, 32]. Besides image restoration, we also focus on video restoration from limited samples,

which has been given less attention in the literature [21, 23, 31, 54]. Instead of simply regarding the

video sequence as a whole tensor and performing global restoration [31, 54], we propose to pro-

cess with overlapping clips while utilizing the information redundancy existing not only within a

single frame but also between adjacent frames.

The nonlocal prior [3] is one of the most commonly used priors utilizing redundant information

in images/videos. Such a prior reflects the fact that there are many similar contents frequently

repeating in the whole image or adjacent video frames, which can be well utilized in image/video

restoration. A classic way is to process the collected similar patch groups. The reason is that similar

degraded patches contain complementary information for each other, which contributes to the

restoration. According to the manipulation scheme applied to the patch group, there are generally

two kinds of methods in the literature: cube based and mixed base.

Cube-based methods stack similar patches directly and then manipulate the data cube. The well-

known denoising method Block-Matching and 3D filtering (BM3D) algorithm [9] is one of the

most representative cube-based methods, which performs a 1D transform on each dimension of

the data cube. The idea has been widely studied, and many extensions have been presented [8,

33, 34, 51]. These methods perform a global optimization on the data cube, neglecting the local

structures inside the cube. In addition, they process the data cube along each dimension, failing

to consider the correlation that exists in cross-dimensional planes of the data cube. In this article,

we propose a multiplanar autoregressive (AR) model to address these problems. Specifically, the

multiplanar AR model is to constrain the local stationarity in different sections of the data cube.

Nonetheless, the multiplanar AR model is not good at smoothing the intrinsic structure of similar

patches.

Matrix-based methods stretch similar patches into vectors, which are spliced to form a data ma-

trix. Two popular approaches, sparse coding and low-rank optimization, can be applied to such

matrices. For sparse coding, the sparse coefficients of each vector in the matrix should be similar.

This amounts to restricting the number of nonzero rows of the sparse coefficient matrix [35, 56].

Zhang et al. [50] presented a group-based sparse representation method, which regards similar

patch groups as its basic units. For low-rank optimization, since the data matrix is constructed by

similar vectors, the rank of its underlying clean matrix to be recovered should be low. By mini-

mizing the rank of the matrix, inessential contents (e.g., the noise) of the matrix can be eliminated

[10, 23]. However, when restoring contents from limited samples, such methods may excessively

smooth the result, as they only consider the correlation of pixels at the same location of different

patches. In addition, unlike stacking similar patches directly, representing patches by 1D vectors

shatters the local information stored in 2D patches.

Upon these analyses, cube-based methods fail to preserve intrinsic contents while maintain-

ing the local information; matrix-based methods shatter the local information while capturing

intrinsic contents, which means that they are relatively complementary. Thus, motivated by com-

bining the merits of cube-based and matrix-based methods, a joint multiplanar AR and low-rank

approach (MARLow) for single frame restoration was proposed in our previous work [27]. Instead

of performing a global optimization on the data cube grouped by similar patches, we proposed the

concept of the multiplanar AR model to exploit the local stationarity on different cross-sections of
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Fig. 1. Framework of the proposed video restoration method. After grouping similar patches from neigh-

boring frames, the joint multiplanar AR and low-rank approach (MARLow) is applied on grouped patches

to restore missing pixels. Then, the MRF model is formed, with different restoration results being treated

as labels, to select the restoration candidates (patches with red check marks) considering their consistency

with neighboring patches. Finally, these candidates are aggregated to restore the input frames.

the data cube. Meanwhile, we jointly considered the matrix grouped by stretched similar patches,

in which the intrinsic content of similar patches can be well recovered by low-rank optimization.

Since the temporal continuity of video sequences provides more rich redundant information

than a single image, the multiplanar AR model can be used in video restoration to further exploit

the similarity in the spatiotemporal domain and help restore missing pixels. However, when ex-

tending algorithms from single-image restoration to video restoration, one should always avoid

generating flickering artifacts. In other words, even if each single frame is recovered quite well,

the visual quality of the overall restored video may not be good enough. This is mainly because

the temporal smoothness of video sequences is not taken into consideration when each frame is

restored individually. Thus, to produce a satisfying restoration result of the input degraded video,

we should not only take into account the local stationarity in neighboring patches (spatial domain),

but we must also consider the continuity in the temporal domain simultaneously. In this regard,

we propose to use a Markov random field (MRF) model to constrain the temporal smoothness of

the output video, ensuring that each restored patch is compatible in its spatiotemporal neighbor-

hood. In summary, we present a multiplanar AR model and low-rank optimization-based video

restoration method, with temporal smoothness constrained by an MRF model. The framework of

the proposed method is illustrated in Figure 1.

The rest of the article is organized as follows. Section 2 provides a brief review of the relevant lit-

erature. Section 3 introduces the proposed image/video restoration method via the multiplanar AR

model and low-rank optimization, with a temporal smoothness constraint. Experimental results

and analyses are presented in Section 4. Section 5 concludes the article.

2 RELATED WORK

In this section, we briefly review the existing literature that closely relates to the proposed

method, including approaches associated with the AR model, low-rank optimization, and tensor

completion.

2.1 AR Model

The AR model has been extensively studied in the past decades. The AR model refers to modeling

a pixel as the linear combination of its supporting pixels, usually its known neighboring pixels.
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Fig. 2. (a) Different cross-sections of a data cube grouped by similar patches also possess local stationarity,

which can be well processed by AR models. (b) White dots represent pixels (i.e., small rectangles in 6 × 6

patches). Green, blue, and yellow rectangles in dashed lines are cross-dimensional planes passing through

the center pixel of a multiplanar AR model (the red circle), containing supporting pixels of the model.

Generally, the conventional AR model is defined as

X (i, j ) =
∑

(m,n)∈N
X (i +m, j + n) · φ (m,n) + σ (i, j ), (1)

whereX (i, j ) represents the pixel located at (i, j ).X (i +m, j + n) is the supporting pixel with spatial

offset (m,n), whereasφ (m,n) is the corresponding AR parameter.N is the set of supporting pixels’

offsets, and σ (i, j ) is the estimation error.

Based on the assumption that natural images/videos have the property of local stationarity,

pixels in a local area share the same AR parameters, (i.e., the weight for each neighbor). Thus,

pixels in a local patch can be modeled and estimated using the same AR parameters.

AR parameters are often estimated from the low-resolution image [28, 53]. Dong et al. [11]

proposed a nonlocal AR model using nonlocal pixels as supporting pixels, which is taken as a data

fidelity constraint. The 3DAR model has been proposed to detect and interpolate the missing data

in video sequences [13, 24]. Since video sequences have the property of temporal smoothness, the

AR model can be extended to the temporal domain by combining the local statistics in the single

frame. Different from approaches mentioned earlier, we focus on different cross-sections of the

data cube grouped by similar nonlocal patches and constrain the local stationarity inside different

planes in the data cube simultaneously (Figure 2).

2.2 Low-Rank Optimization

As a commonly used tool in image restoration, low-rank optimization aims to minimize the rank

of an input corrupted matrix. It can be used for recovering/completing the intrinsic content of

a degraded matrix that is potentially low rank. The motivation is that noises are distributed less

regularly than the principal component of the matrix. Given the input matrix P , the original low-

rank optimization problem is defined as

min rank(L), s.t. LΩ = PΩ, (2)

where Ω represents locations of known elements.

Unfortunately, the original low-rank optimization problem (2) is NP-hard and cannot be solved

efficiently. Therefore, we often consider to relax the problem by substituting ‖ · ‖∗ for rank(·) [5]:

min ‖L‖∗, s.t. LΩ = PΩ, (3)

where ‖L‖∗ is the nuclear norm of matrix L, which is the sum of the singular values. In some

sense, this is the tightest convex relaxation of the NP-hard low-rank optimization problem (2). Its
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equivalent form

argmin
L

‖L − P ‖2F + λ‖L‖∗ (4)

has been widely used in low-rank optimization problems. As proposed in other works [10, 23],

similar patches in images/videos are collected to form a potentially low-rank matrix. Then, the

nuclear norm of the matrix is minimized. Hu et al. [18] and Zhang et al. [49] further presented

the truncated nuclear norm, minimizing the sum of small singular values. Ono et al. [38] proposed

the block nuclear norm, leading to a suitable characterization of the texture component. In our

work, we apply the nuclear norm of matrices, and we use the singular value thresholding (SVT)

method [4] to solve the low-rank optimization problem. Jointly combined with our multiplanar

model (as elaborated in Section 3), our method produces encouraging image/video restoration

results.

2.3 Video Restoration Based on Tensors

Tensor completion methods have been studied to estimate missing values of visual data [6, 17,

25, 26, 31, 48, 54]. Low-rank optimization can also be used on tensor completion. Liu et al. [31]

regarded the whole input video or color image as a potentially low-rank tensor and defined the

trace norm of tensors by extending the nuclear norm of matrices. However, most general natural

images are not potentially low rank. Thus, Chen et al. [6] attempted to recover the tensor while si-

multaneously capturing the underlying structure of it. Zhang et al. [54] proposed a tensor nuclear

norm penalized algorithm for video completion from missing entries based on tensor–Singular

Value Decomposition (t-SVD). Li et al. [25, 26] presented a multitensor completion that utilized

the relationship between different datasets. Hu et al. [17] proposed the twist tensor nuclear norm

and made an effective utilization of the temporal redundancy between frames and the spatial re-

lationships between entries.

However, these methods assume that there is a global correlation in video frames, whereas a

certain video usually contains multiple scenes and video frames that are not correlated with each

other. To tackle the problem, Wang et al. [48] proposed a tensor completion method with spa-

tiotemporal consistency. They introduced a smoothness regularization that ensures the smooth-

ness of successive frames. Nevertheless, the method still neglects the correlation between similar

patches in video frames.

3 THE PROPOSED IMAGE/VIDEO RESTORATION

As discussed in previous sections, cube-based methods and matrix-based methods have their draw-

backs, and they complement each other in some sense. In this section, we introduce the multiplanar

AR model to utilize information from cross-sections of the data cube grouped by similar patches.

Moreover, combined with low-rank optimization and a smoothness constraint built on MRF, we

present the joint multiplanar AR and low-rank approach (MARLow) for image/video restoration.

3.1 Multiplanar AR Model

Consider a reference patch of size n × n; a data cube can be constructed by stacking its similar

patches of size n × n. Observing different cross-sections (cross-dimensional planes) of the cube

(Figure 2(a)), we can see that different cross-sections of the data cube possess local stationarity.

Since AR models can measure the local stationarity of 2D signals, we naturally extend the conven-

tional AR model to the multiplanar AR model to measure cross-dimensional planes of 3D cubes.

The similar patches are collected from adjacent frames in video restoration, as described in Sec-

tion 3.3; as for image/single frame restoration, similar patches are grouped in the input image.
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The multiplanar AR model consists of supporting pixels from different cross-dimensional planes

(as illustrated in Figure 2(b)). For a data cube grouped by similar patches of a patch located at i ,
the multiplanar AR model of pixel Xi (j,k, l ) with offset (j,k, l ) in the data cube is defined as

Xi (j,k, l ) =
∑

m∈N1

∑
(p,q )
∈N2

Yi (j +m,k + p, l + q) · φi (m,p,q) + σi (j,k, l ),

where N1 represents the set of supporting pixels’ planar offsets, and N2 represents the set of

supporting pixels’ spatial offsets (assuming the order of the multiplanar AR model Norder =

|N1 | × |N2 |). Yi (j +m,k + p, l + q) is the supporting pixel with offset (m,p,q) in the data cube,

and φi (m,p,q) is the corresponding AR parameter. σi (j,k, l ) is the estimation error. Y is the ini-

tialization of the input image or video frame X . The reason we use Y here is that it is difficult to

find enough known pixels to support the multiplanar AR model under a high pixel-missing rate.

For ann × n patch, assuming N patches are collected, the aforementioned multiplanar AR model

can be transformed into a matrix form—that is,

Xi = Ti (Y ) · φi + σi , (5)

where Xi ∈ R(n2×N )×1 is a vector containing all modeled pixels.Ti (·) represents the operation that

extract supporting pixels forXi . Each row ofTi (Y ) ∈ R(n2×N )×Nor der contains values of supporting

pixels of each pixel, and φi ∈ RNor der×1 is the multiplanar AR parameter vector.

Thus, the optimization problem for Xi and φi can be formulated as follows:

argmin
Xi ,φi

�
�Xi −Ti (Y ) · φi

�
�

2
F , (6)

where ‖ · ‖F is the Frobenius norm.

To enhance the stability of the solution, we introduce the Tikhonov regularization to solve this

problem. Specifically, a regularization term is included in the optimization problem, forming the

following regularized least-square problem

argmin
Xi ,φi

�
�Xi −Ti (Y ) · φi

�
�

2
F +

�
�Γ · φi

�
�

2
F , (7)

where Γ = αI and I is an identity matrix.

In our work, a multiplanar AR model is constructed by pixels on different planes of a tiny

3 × 3 × 3 cube centered at the pixel to be estimated. All planes are 3 × 3 rectangles, and they all

pass through the center pixel of the tiny cube. Figure 3 shows an ablation study that compares the

proposed method using different planes. As can be observed in Figure 3(i) through (n), restora-

tion results generated by MARLow using multiple planes are better than using a single plane.

Figure 3(n) is the result of the proposed method, which outperforms other results both objectively

and subjectively. Table 1 presents more quantitative results for the ablation study. As can be ob-

served, the proposed method (using all planes) presents the best objective results.

3.2 MARLow

Since the multiplanar AR model is designed to constrain a pixel with its supporting pixels on differ-

ent cross-sections of the patch group, it can deal more efficiently with local structures. For instance,

assume that there is an edge severely degraded, with only a few pixels on it. After collecting similar

patches, low-rank optimization or other matrix-based methods may regard the remaining pixels

as noises and remove them. However, with the multiplanar AR model, these pixels can be used to

constrain each other and strengthen the underlying edge. Nevertheless, AR models are not suit-

able for smoothing the intrinsic structure, whereas low-rank optimization methods specialize in it.
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Fig. 3. (a)-(f) Planes used in our experiments. The x-axis and y-axis denote the patch spatial plane, and the

z-axis is the dimension that stacking similar patches. (g) Close-up of the input degraded image img_032.

(h) Initialization by Bilinear. (i)-(n) Restoration results by MARLow with different planes. (o) iGround truth.

PSNR results of (i)-(n) are 22.16 dB, 21.60 dB, 22.19 dB, 22.52 dB, 23.32 dB, and 24.33 dB, respectively.

Thus, we propose to combine the multiplanar AR model with low-rank optimization (MARLow)

as follows:

argmin
Xi ,φi

�
�Xi −Ti (Y ) · φi

�
�

2
F +

�
�Γ · φi

�
�

2
F + μ

(
‖Ri (X ) − Ri (Y )‖2F + ‖Ri (X )‖∗

)
, (8)

where the last part is the low-rank optimization term restricting the fidelity while minimizing the

nuclear norm (i.e., ‖ · ‖∗) of the data matrix. Ri (·) is an extraction operation that extracts similar

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 4, Article 102. Publication date: December 2019.



102:8 M. Li et al.

Table 1. PSNR (dB) Results of Our Method Using Different Planes

Images (a) (b) (c) (a)-(c) (d)-(f) (a)-(f)

Cathedral 21.18 23.69 21.38 23.65 20.73 24.91

Fountain 23.59 23.68 23.13 23.70 23.88 25.74

Img_024 13.54 17.56 15.80 17.10 13.65 20.80
Img_032 23.32 24.13 22.99 25.52 22.42 27.09

The best result in each case is highlighted in bold.

Fig. 4. Restoration results of Cathedral and Lena by low rank without our multiplanar AR model, (a, c) and

MARLow (b, d). The first row shows the zoom-in regions, and the second row gives full-size images.

patches of the patch located at i . Ri (X ) = [Xi1 ,Xi2 , . . . ,XiN
] ∈ Rn2×N is similar patch group of the

reference patch Xi1 , and Ri (Y ) = [Yi1 ,Yi2 , . . . ,YiN
] ∈ Rn2×N represents the corresponding patch

group extracted from Y .

Figure 4 presents the restoration results by using only low rank without the multiplanar AR

model and by MARLow. From the figure, we can see that MARLow can effectively connect frac-

tured edges (please observe the ceiling of the cathedral and the textures on Lena’s hat).

For different channels of a frame, instead of applying the straightforward idea—that is, the

separate procedure (i.e., processing different channels separately and combining the results

afterward)—we present an alternative scheme to simultaneously process different channels. At

first, we collect similar patches of size n × n × h (where h represents the number of channels)

from a frame. After that, each patch group is processed by simultaneously considering all chan-

nels. Specifically, the collected patches can be formed into h data cubes by stacking slices (of size

n × n × 1) in the corresponding channel of different patches. For the multiplanar AR model, the

optimization problem in Equation (7) turns into

argmin
X k

i ,φ
k
i

∑
1≤k≤h

(
�
�
�
Xk

i −T k
i (Y ) · φk

i
�
�
�

2

F
+
�
�
�
Γ · φk

i
�
�
�

2

F

)
. (9)
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Fig. 5. (a) and (c) are obtained by the separate procedure. (b) and (d) are obtained by simultaneously pro-

cessing different channels.

For low-rank optimization, N collected patches are formed into a potentially low-rank data

matrix of size (n2 × h) × N by representing each patch as a vector.

Taking a frame as an example, in patch grouping, we search for similar patches using reference

patches with the size n × n × 3. The single frame restoration problem can be solved by minimizing

argmin
X C

i ,φC
i

�
�
�
XC

i −TC
i (YC ) · φC

i
�
�
�

2

F
+
�
�
�
Γ · φC

i
�
�
�

2

F
+ μ
(
�
�
�
RC

i (XC ) − RC
i (YC )��

�

2

F
+
�
�
�
RC

i (XC )��
�∗

)
, (10)

where

XC
i =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

XR
i

XG
i

X B
i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R(n2×N×3)×1, φC
i =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φR
i

φG
i

φB
i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R(Nor der×3)×1,

TC
i (YC ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ti (Y R ) 0 0

0 Ti (YG ) 0

0 0 Ti (Y B )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R(n2×N×3)×(Nor der×3),

RC
i (XC ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

XR
i1

XR
i2
· · · XR

iN

XG
i1

XG
i2
· · · XG

iN

X B
i1

X B
i2
· · · X B

iN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R(n2×3)×N ,

RC
i (YC ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y R
i1

Y R
i2
· · · Y R

iN

YG
i1

YG
i2
· · · YG

iN

Y B
i1

Y B
i2
· · · Y B

iN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R(n2×3)×N .

The notations are given similarly as the preceding definitions. By utilizing the information in

different channels, the patch grouping can be more precise. Furthermore, information from differ-

ent channels compensate for each other and constrain the restoration result. Figure 5 illustrates the

difference between processing different channels separately and simultaneously (with 80% of pix-

els missing). Compared with the separate procedure, the simultaneous approach can significantly

improve the performance of our method.

3.3 Temporal Smoothness Constraint

In this section, we introduce a constraint built on MRF to ensure the temporal smoothness of the

video. The nonlocal prior can be perfectly applied to video sequences. In other words, instead of

only searching for similar patches from a single frame (spatial domain), we expand the searching

range to neighboring frames (temporal domain) to find more redundant information. More specif-

ically, we search for similar patches of a reference patch in the current frame and neighboring
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frames. After that, the collected similar patches are grouped into a data cube and then processed

by MARLow.

Nevertheless, there is another important property that can be utilized in video restoration: the

smoothness in the temporal domain. Generally, most video sequences contain few large motion

vectors between adjacent frames, which allows us to constrain the restored patches.

Furthermore, we notice that for similar patch sets of different reference patches, there may

be several patches located on the same location. Since MARLow reconstructs the whole similar

patch set at once, there may be different restoration results for a certain patch. To select the best

restoration candidate that satisfies the smoothness constraint, we optimize the following MRF

energy function:

E (P ) =
∑
p⊂V

Ed (P (p)) +
∑

{p,p′ }⊂V

Es (P (p), P (p ′)). (11)

Here, V represents the video sequence. p and p ′ are temporally neighboring patches—that is,

patches with the same spatial coordinates on neighboring frames. P (p) selects one of the restora-

tion candidates of patch p. Notice that there may be no restoration candidate for some patches.

The data term Ed is 0 if there exists at least one restoration candidate for p; otherwise, Ed is +∞.

The smoothness term Es penalizes the incoherent temporal patches, and it is defined as follows:

Es (p1,p2) = ‖p1 − p2‖2F . (12)

The energy function (11) is optimized using multilabel graph cuts [2]. Although we use MRF in

our approach, one can also utilize optical flow to constrain the temporal smoothness.

After minimizing the energy function, the best restoration candidate of each patch can be de-

termined. Patches without restoration candidates are set as the previous restoration result from

the last iteration. All restored patches are then aggregated into a whole video sequence V , with

overlapped regions averaged. Since it is unpractical to load the whole sequence, we instead pro-

cess a temporal window with length (2w + 1) containing the kth frame as reference frame and

its neighboring frames (from the (k −w )th frame to the (k +w )th frame) at once, with one frame

overlapping with the previous temporal window. If w = 0, the problem degenerated to the single

frame restoration problem, that is, sequentially process each frame individually. Figure 6 illustrates

zoomed area of the first five frames of Foliage. As can be observed, processing frames individu-

ally cannot restore shed leaves on the road in the first, third, and fourth frames, which can easily

cause flickering artifacts. By contrast, the proposed method successfully recovers the information

by utilizing redundant information between adjacent frames and maintains temporal consistency

of the reconstructed video.

3.4 Optimization

In this section, we present an alternating minimization algorithm to solve the optimization prob-

lems in Equations (8) and (10). Take Equation (8) for an example. We address each of the variable

Xi and φi separately and present an efficient optimization algorithm.

When fixing Xi , the problem turns into

argmin
φi

�
�Xi −Ti (Y ) · φi

�
�

2
F +

�
�Γ · φi

�
�

2
F , (13)

which is a standard regularized linear least square problem, and can be solved by ridge regression.

The closed-form solution is given by

φi =
(
ŶT Ŷ + ΓT Γ

)−1
ŶXi , (14)

where Ŷ = Ti (Y ).
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Fig. 6. From top to bottom: Close-ups of ground truth, restoration results of the sequential process, and

restoration results of the proposed method.

With φi fixed, the problem for updating Xi becomes

argmin
Xi

�
�Xi −Ti (Y ) · φi

�
�

2
F + μ

(
‖Ri (X ) − Ri (Y )‖2F + ‖Ri (X )‖∗

)
. (15)

Here, we notice thatXi and Ri (X ) contain the same elements. Their only difference is the forma-

tion:Xi is a vector, and Ri (X ) is a matrix. Since we use Frobenius norm here, the value of the norm

does not change if we reform the vector into a matrix form. Thus, we reform Xi into a matrix Mi

corresponding to Ri (X ) (in this way, Ri (X ) does not need to be reformed, and it can be represented

by Mi directly). The vector Ti (Y ) · φi is also reformed into a matrix form, represented by Y1i
. By

denoting Y2i
= Ri (Y ), we can get the simplified version of Equation (15):

argmin
Mi

�
�Mi − Y1i

�
�

2
F + μ

(
�
�Mi − Y2i

�
�

2
F + ‖Mi ‖∗

)
. (16)

It is a modified low-rank optimization problem and can be transformed into the following for-

mation:

argmin
Mi

�
�Mi − Y ′i ��

2
F + λ‖Mi ‖∗, (17)

where Y ′i = (1 − λ)Y1i
+ λY2i

and λ = μ/(μ + 1). The problem now turns into a standard low-rank

optimization problem [4]. Its closed-form solution is given as

Mi = Sτ (Y ′i ), (18)

where Sτ (·) represents the soft shrinkage process.

In our work, to utilize the updated data for further patch grouping, we propose a global iteration

method. Specifically, after patch grouping, we perform MARLow on every patch group. Then, we

solve the energy minimization problem to determine the best restoration patch and aggregate

all overlapped patches into an intermediate frame for the next iteration. The iterative procedure

continues until it reaches the maximum iteration number.
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4 EXPERIMENTAL RESULTS

All of our experiments are implemented on the MATLAB platform. Testing images/videos come

from the Sun-Hays dataset [44], the Urban dataset [20], the Berkeley segmentation dataset and

benchmark (BSDS) [37], and the VideoSR dataset [29]. Experimental results of compared methods

are all generated by the original authors’ codes, with the parameters manually optimized. Both

objective and subjective comparisons are provided for a comprehensive evaluation of our work.

The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index are used to evalu-

ate the objective image quality. To fully assess the proposed method, we first compare our video

restoration method with existing methods. Then, we compare our single frame restoration method

with state-of-the-art grayscale and color image restoration methods. Finally, we test our method

on other interesting applications, such as image interpolation and text removal.

For color images (and videos), we evaluate the performance of the proposed algorithm with

random-missing pixels across R, G, and B channels [7, 36, 56]. More specifically, three random

binary masks are used to R, G, and B channels, separately, to generate a degraded color image. For

an input, we first conduct a simple interpolation-based initialization (say Bilinear interpolation in

our experiments) on it to provide enough information for patch grouping.

In our implementation, if not specially stated, the size of each patch is set to 8 × 8 for grayscale

images and 5 × 5 × 3 for color images/videos, with a four-pixel (one-pixel in color images/videos)

overlap. The number of similar patches is set to N = 64 for grayscale images and N = 75 for color

images/videos. Other parameters in our algorithm are empirically set to α =
√

10, μ = 10. Please

see the electronic version for better visualization of the subjective comparisons shown in the

following.

4.1 Video Restoration

For video restoration, we have compared our method with a matrix-based denoising method

by Ji et al. [23], two state-of-the-art tensor-based video restoration algorithms (t-SVD [54] and

LRTC [31]), and a single-frame restoration method GSR [50]. Ji et al. [23] proposed a patch-based

video denoising method capable of removing mixed noise, which is a representative matrix-based

method. t-SVD is a tensor nuclear norm penalized algorithm for video restoration from missing

entries. Generalized from the matrix trace norm, the tensor trace norm is proposed in Liu et al.

[31] to deal with tensor completion problems. Both of these methods regard the video with miss-

ing pixels as a whole tensor and perform a global restoration process. The experimental settings

of video restoration are basically the same with color image restoration. The temporal processing

window length is set as 5.

Table 2 shows the average PSNR and SSIM results of different methods for six video sequences.

The objective PSNR/SSIM results indicate that our method has a rather large improvement over

other methods. Figure 7 and Figure 8 illustrate some of the video restoration results of different

methods. They show that although t-SVD and LRTC are able to generate rather good results of

static backgrounds, they still produce burrs around edges and boundaries. The method by Ji et al.

[22] generates results with better visual qualities, but the method blurs the results to some extent.

Our method is able to reconstruct clear and sharp edges, and it generates visually pleasant results.

The second and the third rows of Figure 8 show a particular situation that our method out-

performs other tensor-based methods. As can be observed in the results, both LRTC and t-SVD

generate severe ghosting artifacts. In fact, this sequence has rather still backgrounds (e.g., the sky

region) and moving foregrounds (e.g., the penguin). This kind of sequence is particularly not suit-

able for methods built on the whole sequence to restore. The reason is that although some parts of

the scene remain still, other parts keep changing. For LRTC and t-SVD, as they regard the whole
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Table 2. Average PSNR (dB) and SSIM Results of Video Restoration from Different Methods

Sequences Ratio LRTC t-SVD Ji GSR Proposed

Foliage
80% 20.21/0.5651 22.20/0.6159 23.70/0.6918 23.93/0.7729 30.08/0.9277

90% 16.83/0.3697 19.80/0.4278 21.67/0.5539 21.14/0.6039 25.43/0.8074

Walk
80% 20.49/0.6488 23.27/0.6820 26.59/0.8497 28.61/0.9194 35.06/0.9630

90% 17.02/0.4786 20.44/0.5363 24.22/0.7769 24.72/0.8314 29.83/0.9129

Calendar
80% 17.46/0.4525 19.38/0.5374 20.01/0.6601 21.00/0.8001 25.47/0.9052

90% 14.71/0.2792 17.21/0.3651 18.37/0.5507 18.25/0.6613 21.43/0.7979

City
80% 21.93/0.5433 24.20/0.5930 25.47/0.7193 29.55/0.8814 35.02/0.9490

90% 19.47/0.4047 21.98/0.4291 23.53/0.5989 25.20/0.7338 30.04/0.8756

Penguin
80% 27.58/0.8570 30.23/0.8951 29.59/0.9255 31.28/0.9465 37.76/0.9677

90% 22.73/0.6962 26.32/0.7969 27.16/0.8867 27.77/0.9046 32.80/0.9397

Temple
80% 22.45/0.6746 25.86/0.7600 24.73/0.7792 26.70/0.8928 32.77/0.9582

90% 17.88/0.4598 22.58/0.6089 22.86/0.6910 23.37/0.7791 27.57/0.8866

Average 19.90/0.5358 22.79/0.6039 23.99/0.7236 25.13/0.8106 30.27/0.9076

The best result in each case is highlighted in bold.

Fig. 7. Visual quality comparison of different video restoration methods under an 80% missing rate. From

top to bottom: Close-ups of Foliage, Calendar, Temple, and City.

sequence as a low-rank tensor, they can be easily affected by the content of input videos and gen-

erate noticeable artifacts. However, our method can successfully produce ghost-free results with

no flickering artifacts that mainly benefit from MARLow implemented on videos and our temporal

smoothness constraint.

4.2 Grayscale Image Restoration

For grayscale images, we compare our method with state-of-the-art grayscale image restoration

methods BPFA [56], BNN [38], SAIST [10], JSM [51], and DIP [46]. BPFA considers a nonparametric

Bayesian method using learned dictionaries to recover incomplete images, and it can be also
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Fig. 8. Visual quality comparison of different video restoration methods under a 90% missing rate. From top

to bottom: Close-ups of Walk, Penguin, Penguin, and Temple.

Table 3. PSNR (dB) and SSIM Results of Grayscale Image Restoration from

Different Methods Under 80% and 90% Missing Rates

Images Ratio DIP BNN BPFA JSM SAIST Proposed

Canyon
80% 27.15/0.7873 26.19/0.7622 28.01/0.8279 27.79/0.8188 28.28/0.8279 28.48/0.8411

90% 24.86/0.6886 23.43/0.6370 24.94/0.6909 24.95/0.6959 25.39/0.7143 25.93/0.7437

Cathedral
80% 25.37/0.7397 23.71/0.6854 26.45/0.8081 26.82/0.8316 27.44/0.8443 27.81/0.8675

90% 22.32/0.6097 21.50/0.5432 23.76/0.6849 23.82/0.6566 24.26/0.6797 25.07/0.7588

Chalet
80% 20.38/0.7199 19.72/0.6416 20.69/0.7139 20.89/0.7189 21.24/0.7517 21.09/0.7544

90% 18.08/0.5858 17.56/0.4796 18.63/0.5560 18.76/0.5630 19.01/0.6083 18.90/0.6190

Cockpit
80% 23.55/0.6968 23.28/0.7315 25.11/0.8011 26.23/0.8287 26.65/0.8354 26.86/0.8514

90% 21.89/0.6070 20.56/0.5849 22.17/0.6556 23.05/0.6913 23.63/0.7112 23.91/0.7428

Fountain
80% 26.86/0.7809 25.51/0.7254 27.25/0.8008 27.91/0.8181 28.49/0.8308 28.70/0.8447

90% 24.62/0.6992 22.82/0.5765 24.30/0.6565 24.75/0.6739 25.37/0.7009 25.89/0.7375

Ruin
80% 27.92/0.8439 26.41/0.8081 27.81/0.8530 28.41/0.8590 28.70/0.8604 29.02/0.8707

90% 25.68/0.7860 23.93/0.7139 25.30/0.7582 25.73/0.7685 26.00/0.7716 26.54/0.7983

Skyscraper
80% 23.94/0.7765 22.37/0.7830 24.67/0.8460 24.77/0.8445 25.81/0.8658 26.16/0.8779

90% 21.41/0.5955 20.14/0.6798 21.95/0.7277 22.07/0.7402 22.45/0.7582 22.86/0.7842

Village
80% 23.59/0.7145 22.86/0.7001 23.97/0.7575 23.16/0.7497 24.10/0.7817 25.01/0.7976

90% 21.83/0.6551 20.56/0.5604 21.54/0.6140 20.53/0.6014 21.80/0.6540 22.45/0.6783

Average 23.72/0.7054 22.53/0.6633 24.16/0.7345 24.35/0.7413 24.91/0.7623 25.29/0.7855

The best result in each case is highlighted in bold.

applied to color images. BNN introduces a new convex prior block nuclear norm to character-

ize texture components. SAIST takes a low-rank approach toward simultaneous sparse coding,

developing the spatially adaptive iterative SVT for image restoration. JSM presents a joint statisti-

cal model in the hybrid space-transform domain. DIP is a latest deep learning–based method, and

it utilizes neural networks to capture low-level image statistics prior.
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Fig. 9. Comparison of grayscale image restoration results of Cathedral and Fountain by different methods

with 80% of pixels missing.

Table 3 shows PSNR/SSIM results of different methods on test images with 80% and 90% of pixels

missing. From Table 3, the proposed method achieves the highest PSNR and SSIM in most cases,

which fully demonstrates the effectiveness of our method. Specifically, the improvement on PSNR

is 0.38 dB on average compared with the second best algorithm (i.e., SAIST).

Figure 9 compares the visual quality of restoration results for test images (with 80% of pixels

missing). From Figure 9, it can be observed that BNNs fail to restore image details. BPFA and DIP

show better performance and recover more details. Nonetheless, there are plenty of noises along

edges recovered by BPFA, and DIP produces scratchy details. As for JSM and SAIST, they both

produce noises on image details in addition to not generating fine details. Our method presents

the best visual quality by preserving image details and edges.

4.3 Color Image Restoration

We compare our method with state-of-the-art color image restoration methods BPFA [56], GSR

[50], KSVD [36], ST-NLTV [7], and DIP [46]. GSR represents group-based sparse representation,

which enforces the intrinsic local sparsity and nonlocal self-similarity of images simultaneously in

a unified sparse representation framework. KSVD learns the correlation between different R, G, and

B channels based on learning models for sparse color image representation. ST-NLTV extends the

nonlocal total variation regularization by taking advantage of the gradient of a multicomponent

image.
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Table 4. PSNR (dB) and SSIM Results of Color Image Restoration from

Different Methods Under 80% and 90% Missing Rates

Images Ratio DIP ST-NLTV GSR KSVD BPFA Proposed

Abbey
80% 23.94/0.7159 26.67/0.8268 25.81/0.8351 28.90/0.9067 28.58/0.8963 29.77/0.9103

90% 22.90/0.6604 22.97/0.6869 23.42/0.7399 25.29/0.7999 25.21/0.7947 26.51/0.8299

Boardwalk
80% 22.22/0.5043 26.07/0.7261 25.17/0.7220 28.92/0.8695 28.86/0.8544 28.83/0.8430

90% 20.34/0.3831 19.29/0.4920 23.10/0.5797 25.39/0.7238 25.68/0.7213 25.90/0.7056

Burial
80% 25.50/0.6249 27.96/0.7479 27.88/0.7608 28.91/0.8260 29.23/0.8117 30.40/0.8377

90% 24.83/0.5659 23.65/0.5624 25.49/0.6409 25.44/0.6746 26.45/0.6860 27.68/0.7203

Inn
80% 24.88/0.6980 27.53/0.8080 27.14/0.8238 30.09/0.9079 30.00/0.8996 30.71/0.9038

90% 23.83/0.6400 23.79/0.6590 24.48/0.7154 26.36/0.7989 26.53/0.8012 27.39/0.8101

Phone

Booth

80% 25.24/0.7709 27.32/0.8439 30.11/0.9197 31.19/0.9449 32.53/0.9469 34.39/0.9494

90% 24.80/0.7483 23.05/0.7454 25.87/0.8310 25.86/0.8461 27.46/0.8801 29.75/0.8971

Img_001
80% 18.90/0.5329 27.89/0.8461 28.10/0.8742 29.49/0.9147 30.57/0.9183 32.68/0.9235

90% 21.08/0.5566 23.51/0.7354 23.92/0.7630 25.34/0.8056 26.19/0.8282 28.65/0.8496

Img_002
80% 23.08/0.7232 26.17/0.8474 27.79/0.9276 27.92/0.9136 28.53/0.9240 32.28/0.9644

90% 21.13/0.6172 21.69/0.6731 27.85/0.9280 24.14/0.8043 24.89/0.8295 28.11/0.9172

Img_003
80% 19.88/0.5111 24.07/0.7604 24.16/0.7997 26.04/0.8593 26.29/0.8587 28.12/0.8964

90% 19.22/0.4387 18.38/0.4910 21.01/0.6469 22.75/0.7257 22.96/0.7271 24.66/0.7927

Img_004
80% 16.73/0.4518 21.09/0.7643 30.54/0.9651 25.66/0.9267 26.30/0.9285 34.51/0.9809

90% 16.03/0.3381 16.98/0.4951 20.42/0.8027 20.99/0.7911 21.91/0.8180 28.32/0.9468

Img_005
80% 21.44/0.8260 24.01/0.8981 28.14/0.9676 26.49/0.9399 26.83/0.9409 36.41/0.9874

90% 20.14/0.7737 19.45/0.7967 20.98/0.8738 22.18/0.8397 22.19/0.8478 27.81/0.9615

Average 21.81/0.6041 23.58/0.7203 25.57/0.8058 26.37/0.8410 26.86/0.8457 29.64/0.8814

The best result in each case is highlighted in bold.

Fig. 10. Comparison of color image restoration results of different methods with 80% of pixels missing. From

top to bottom: Close-ups of Burial, Phone Booth, and img_002.

Table 4 lists PSNR/SSIM results of different methods on color images from Sun-Hays and Urban

datasets with 80% and 90% of pixels missing. It is clear that the proposed method achieves the

highest PSNR/SSIM in most of the cases. Compared with grayscale images, our image restoration

method performs even better on color images judging from the average PSNR and SSIM. The

proposed method outperforms the second best method (i.e., BPFA) by 2.78 dB and 0.0357 in terms
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Fig. 11. Comparison of color image restoration results of different methods with 90% of pixels missing. From

top to bottom: Close-ups of img_003, img_004, and img_005.

of PSNR and SSIM on average, respectively. Note that the highest PSNR and SSIM improvements

over the runner-ups are 8.27 dB (over GSR on img_005 under an 80% missing rate) and 0.1289 (over

BPFA on img_004 under a 90% missing rate), respectively.

Figure 10 and Figure 11 compare the visual quality of color image restoration results for test

images (with 80% and 90% of pixels missing, respectively). Apparently, all comparing methods

perform well on flat regions. However, DIP fails to recover clear edges, whereas ST-NLTV cannot

restore fine details. KSVD and BPFA are better on recovering details, but they generate noticeable

artifacts around edges. GSR produces sharper edges, but its results are somewhat blurred. The

results of our method are of the best visual quality, especially under a higher missing rate.

4.4 Text Removal

Text removal is one of the classic cases of image restoration. The purpose of text removal is to

recover the original image from a degraded version by removing the text mask. We have compared

our method with several state-of-the-art algorithms: the Content-Aware Fill feature in Photoshop

CS6 [1], FoE [41], JSM [51], BPFA [56], and DIP [46]. Our experimental settings of text removal

are the same with those in color image restoration. Table 5 shows the PSNR and SSIM results of

different methods. Figure 12 presents visual comparison of different approaches, which further

illustrates the effectiveness of our method.

4.5 Image Interpolation

The proposed method can also be applied on basic image processing problems, such as image inter-

polation. In fact, image interpolation can be regarded as a special circumstance of image restora-

tion from limited samples. To be more specific, locations of the known/missing pixels in image

interpolation are fixed. Since our method is designed to deal with image restoration from lim-

ited samples, we do not utilize this feature in our current implementation. Even so, we evaluate

the performance of the proposed method with respect to image interpolation by comparing with

other existing interpolation methods. The compared methods include AR model–based interpola-

tion algorithms NEDI [28] and SAI [53], as well as a directional cubic convolution interpolation

DCC [55]. Objective results are given in Table 6 and subjective comparisons are demonstrated in

Figure 13, which reveal the competitiveness of our method in image interpolation.
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Table 5. PSNR (dB) and SSIM Results of Text Removal from Different Methods

Images Content-Aware FoE BPFA JSM DIP Proposed

Aqueduct 32.14/0.9307 37.21/0.9653 35.84/0.9524 36.87/0.9636 35.41/0.9497 37.98/0.9678

Badlands 28.37/0.9224 31.92/0.9606 31.76/0.9515 32.19/0.9608 30.57/0.9423 33.33/0.9682

Barn 28.51/0.9254 32.38/0.9659 31.82/0.9551 34.01/0.9683 30.26/0.9336 34.36/0.9712

Balcony 27.50/0.9305 34.23/0.9743 33.56/0.9633 35.78/0.9799 33.99/0.9685 36.79/0.9835

Average 29.13/0.9273 33.93/0.9665 33.25/0.9556 34.71/0.9681 32.56/0.9485 35.61/0.9727

The best result in each case is highlighted in bold.

Fig. 12. Visual quality comparison of text removal for the Balcony image.

Table 6. PSNR (dB) and SSIM Results of Interpolation from Different Methods

Images NEDI SAI DCC Proposed

img_017 25.00/0.8764 25.25/0.8847 25.10/0.8821 24.64/0.8745

img_022 27.22/0.8539 27.55/0.8641 27.39/0.8621 27.48/0.8655

img_024 18.57/0.6860 18.54/0.6926 19.27/0.7110 19.64/0.7284

img_032 27.89/0.8714 28.38/0.8787 28.47/0.8786 28.65/0.9004

Average 24.67/0.8219 24.93/0.8300 25.06/0.8334 25.10/0.8422

The best result in each case is highlighted in bold.

4.6 Removal of Salt and Pepper Noise

Salt and pepper noise (S&P noise), which corrupts images/videos with either maximum or mini-

mum values, can be removed by the proposed method. The mask for an S&P noise degraded image

can be automatically generated by regarding pixels with maximum or minimum values (i.e., 0 or

255) as 0 and others as 1. Intuitively, the quality of the mask is affected by the number of pixels

with values of 0 or 255 in the uncorrupted image. The more pixels with values of 0 or 255, the more

inaccurate the generated mask is. We have already demonstrated the effectiveness of our method

given accurate masks. Therefore, for the input of our method, we choose images with lots of pixels

of values 0 and 255 (in one of the test images, the percentage of such pixels is more than 25%) and

randomly add 80% to 90% S&P noise on them. Figure 14 gives some denoising results. State-of-the-

art methods Noise Adaptive Fuzzy Switching Median filter (NAFSM) [45] and Adaptive Weighted

Mean Filter (AWMF) [52] are compared in the experiment.
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Fig. 13. Subjective comparison of interpolation for img_017 from the Urban dataset.

Fig. 14. Comparisons of S&P noise removal for images from BSDS300. The noise density is 80% in the first

row and 90% in the second row.

4.7 Other Applications

Our method can also be applied to other applications, such as inpainting old photos and restoring

artworks virtually. Figure 15 shows some examples. The first row is the restoration of a small

part of the jewels from the God the Father panel in the Ghent Altarpiece. The mask is generated

by crack detection [42]. The second row is an old photo, and its map is user specified. From the

figure, it can be observed that our method successfully repair the cracks without introducing many

artifacts.
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Fig. 15. Results for virtual restoration of artwork and an old photo.

5 CONCLUSION

In this work, we introduce the new concept of the multiplanar model, which exploits the cross-

dimensional correlation in similar patches collected in images/videos. Moreover, a joint multipla-

nar AR and low-rank approach for video restoration from limited samples is presented, along with

an alternating optimization algorithm. To ensure the temporal smoothness in restored videos, we

also introduce a temporal constraint built on an MRF model. Extensive experimental results have

demonstrated the effectiveness of our method on image/video restoration. Our method also gener-

ates comparable results when facing tasks as interpolation, text removal, and S&P noise removal.
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